Deep learning (5 cr)
Code: RO00FQ49-3001
General information
- Enrollment
- 07.04.2025 - 21.04.2025
- Registration for the implementation has ended.
- Timing
- 01.09.2025 - 12.12.2025
- The implementation has not yet started.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- Department of Construction and Energy Engineering
- Campus
- Kouvola Campus
- Teaching languages
- English
- Finnish
- Seats
- 15 - 30
- Teachers
- Henry Lähteenmäki
- Teacher in charge
- Henry Lähteenmäki
- Groups
-
ROKV23SPRobotics and artificial intelligence, full-time studies
-
ROKT22SPRobotics and artificial intelligence, full-time studies
- Course
- RO00FQ49
Realization has 26 reservations. Total duration of reservations is 39 h 0 min.
Time | Topic | Location |
---|---|---|
Thu 04.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 04.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 11.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 11.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 18.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 18.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 25.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 25.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 02.10.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 02.10.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 09.10.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 09.10.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 30.10.2025 time 09:30 - 11:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 30.10.2025 time 11:00 - 12:30 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 13.11.2025 time 09:30 - 11:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 13.11.2025 time 11:00 - 12:30 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 20.11.2025 time 09:30 - 11:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 20.11.2025 time 11:00 - 12:30 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 27.11.2025 time 09:30 - 11:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 27.11.2025 time 11:00 - 12:30 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 04.12.2025 time 09:30 - 11:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 04.12.2025 time 11:00 - 12:30 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 11.12.2025 time 09:30 - 11:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 11.12.2025 time 11:00 - 12:30 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 18.12.2025 time 10:30 - 12:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Thu 18.12.2025 time 12:30 - 14:00 (1 h 30 min) |
Deep learning RO00FQ49-3001 |
142
Teorialuokka (40+1), päärakennus
|
Objective
You can implement deep learning models through programming.
You know how to use libraries designed for deep learning.
You understand the significance of the cost function and gradients in optimization.
You can communicate using terminology related to neural networks.
You understand the purpose of activation functions.
You know how to modify your learning algorithm or data to improve model performance.
Content
What libraries are used for programming deep learning models?
How are deep learning models programmed?
How can the performance of a learning algorithm be improved?
What concepts are related to deep learning?
What are the application areas of deep learning?
Evaluation
a. use professional vocabulary and concepts in an expert way in different situations.
b. assess information sources critically.
c. work as team members in working life expert duties and identify and describe the problems of the professional field.
e. choose appropriate models, methods, software and techniques according to the purpose and justify these choices.
g. apply critically the ethical principles of the professional field in different situations.
Course material
Lecture notes and calculations.
Study forms and methods
Final exam.
RDI and work-related cooperation
This course does not include RDI and work-related cooperation.
Evaluation scale
1-5
Qualifications
Knowledge of applied mathematics, data analysis, and machine learning is required.