Skip to main content

Deep learning (5 cr)

Code: RO00FQ49-3001

General information


Enrollment
07.04.2025 - 21.04.2025
Registration for the implementation has ended.
Timing
01.09.2025 - 12.12.2025
The implementation has not yet started.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Department of Construction and Energy Engineering
Campus
Kouvola Campus
Teaching languages
English
Finnish
Seats
15 - 30
Teachers
Henry Lähteenmäki
Teacher in charge
Henry Lähteenmäki
Groups
ROKV23SP
Robotics and artificial intelligence, full-time studies
ROKT22SP
Robotics and artificial intelligence, full-time studies
Course
RO00FQ49

Realization has 26 reservations. Total duration of reservations is 39 h 0 min.

Time Topic Location
Thu 04.09.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 04.09.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 11.09.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 11.09.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 18.09.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 18.09.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 25.09.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 25.09.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 02.10.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 02.10.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 09.10.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 09.10.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 30.10.2025 time 09:30 - 11:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 30.10.2025 time 11:00 - 12:30
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 13.11.2025 time 09:30 - 11:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 13.11.2025 time 11:00 - 12:30
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 20.11.2025 time 09:30 - 11:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 20.11.2025 time 11:00 - 12:30
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 27.11.2025 time 09:30 - 11:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 27.11.2025 time 11:00 - 12:30
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 04.12.2025 time 09:30 - 11:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 04.12.2025 time 11:00 - 12:30
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 11.12.2025 time 09:30 - 11:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 11.12.2025 time 11:00 - 12:30
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 18.12.2025 time 10:30 - 12:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Thu 18.12.2025 time 12:30 - 14:00
(1 h 30 min)
Deep learning RO00FQ49-3001
142 Teorialuokka (40+1), päärakennus
Changes to reservations may be possible.

Objective

You can implement deep learning models through programming.
You know how to use libraries designed for deep learning.
You understand the significance of the cost function and gradients in optimization.
You can communicate using terminology related to neural networks.
You understand the purpose of activation functions.
You know how to modify your learning algorithm or data to improve model performance.

Content

What libraries are used for programming deep learning models?
How are deep learning models programmed?
How can the performance of a learning algorithm be improved?
What concepts are related to deep learning?
What are the application areas of deep learning?

Evaluation

a. use professional vocabulary and concepts in an expert way in different situations.
b. assess information sources critically.
c. work as team members in working life expert duties and identify and describe the problems of the professional field.
e. choose appropriate models, methods, software and techniques according to the purpose and justify these choices.
g. apply critically the ethical principles of the professional field in different situations.

Course material

Lecture notes and calculations.

Study forms and methods

Final exam.

RDI and work-related cooperation

This course does not include RDI and work-related cooperation.

Evaluation scale

1-5

Qualifications

Knowledge of applied mathematics, data analysis, and machine learning is required.

Go back to top of page