Automation engineeringLaajuus (5 cr)
Code: EN00BH62
Credits
5 op
Objective
After completing this course, you will be able to
- explain the main phases and outputs of an automation project
- specify automation loop by loop
- analyze and design field instrumentation
- program, test and commission measurement and control applications and control room graphics of power plants
- use CAD programs and shared database and documentation programs for automation engineering
- work out a budget for an automation project.
Content
What should you do in the specification, design, implementation, installation, functional testing, validation, production and removal phases of an automation project?
How do you work out an instrumentation or motor loop description, and how is it utilized by an operator or maintenance engineer?
How do you present cabling and connections in instrumentation and electrical loop diagrams?
In which way is the design of automation applications supported by block programming?
How do you manage the engineering and maintenance of instrumentation and motor control?
Which elements make the price of an automation project?
Qualifications
Prerequisite courses are
Measurement and control technology
Process control systems and communication networks.
Materials
Modelling and simulation of process systems
Enrollment
06.04.2023 - 21.04.2023
Timing
30.10.2023 - 19.12.2023
Number of ECTS credits allocated
5 op
Virtual portion
1 op
Mode of delivery
80 % Contact teaching, 20 % Distance learning
Unit
Department of Construction and Energy Engineering
Campus
Kotka Campus
Teaching languages
- English
- Finnish
Seats
10 - 40
Degree programmes
- Degree Programme in Energy Engineering
Teachers
- Merja Mäkelä
Teacher in charge
Merja Mäkelä
Groups
-
ENKT21SPEnergy engineering, full-time studies
Objective
After completing this course, you will be able to
- explain the main phases and outputs of an automation project
- specify automation loop by loop
- analyze and design field instrumentation
- program, test and commission measurement and control applications and control room graphics of power plants
- use CAD programs and shared database and documentation programs for automation engineering
- work out a budget for an automation project.
Content
What should you do in the specification, design, implementation, installation, functional testing, validation, production and removal phases of an automation project?
How do you work out an instrumentation or motor loop description, and how is it utilized by an operator or maintenance engineer?
How do you present cabling and connections in instrumentation and electrical loop diagrams?
In which way is the design of automation applications supported by block programming?
How do you manage the engineering and maintenance of instrumentation and motor control?
Which elements make the price of an automation project?
Opiskelumateriaali
1. Learn-materiaali.
2. Automaatiosuunnittelun prosessimalli. Yhteiset käsitteet verkottuneen suunnittelun perustana. Suomen Automaatioseura ry., Helsinki, 2007. 43 s.
3. Tommila, T., toim. Laatu automaatiossa. Suomen Automaatioseura ry. , Helsinki, 2001. 245 s.
4. Automaatiosovellusten ohjelmistokehitys. Suunnittelun työtavat, välineet ja sovellusarkkitehtuurit. Suomen Automaatioseura ry. 2005. 152 s.
5. Harju, T., Marttinen, A. Säätötekniikan koulutusmateriaali (verkkojulkaisu), Säätöpiirin virityksen perusteet (kirja). Suomen Automaatioseura ry. , Helsinki, 2000. 166 s.
6. Automaatio liiketoimintaprosessien tukena (verkkojulkaisu Suomen automaatioseura ry.), Tekesin katsaus 271, 2010.
7. SFS-ISO 14617-6 Kaavioissa käytettävät piirrosmerkit. Osa 6: Mittaus- ja ohjaustoiminnot. SFS, Helsinki, 2004.
8. SFS-EN ISO 10628 Prosessikaaviot. Yleiset ohjeet. SFS, Helsinki, 2001.
9. PSK 3601 Prosessiteollisuuden virtauskaavioiden piirrosmerkit. PSK Standardisointi, Helsinki, 2005. 38 s.
10. PSK 5201 - PSK 5210 Instrumenttiasennusten tyyppipiirustukset. PSK Standardisointi, Helsinki, 2003.
11. PSK 4601 Automaation hankinta. Yleiset periaatteet. käsitteet ja määritelmät. PSK Standardisointi, Helsinki, 1996. 24 s.
12. PSK 4602 Automaation hankinta. Prosessinohjausjärjestelmä. PSK Standardisointi, Helsinki, 1996. 11 s.
13. PSK 4603 Automaation hankinta. Instrumentointi. PSK Standardisointi, Helsinki, 1996. 10 s.
14. PSK 7902 Teollisuuden suunnittelu. Sopimusmalli. PSK Standardisointi, Helsinki, 2005. 2 + 29 s.
15. SFS-IEC 61506 Teollisuusprosessien mittaus ja ohjaus. Sovellusohjelmiston dokumentaatio. Suomen Standar-disoimisliitto SFS, Helsinki, 1998. 121 s.
16. SFS-IEC 848 Ohjausjärjestelmien toimintodiagrammien laatiminen.
17. SFS 5098 Prosessi-instrumentoinnin piirustukset ja muut asiakirjat.
18. SFS 2972 Sähkölaitteiden kotelointiluokat.
19. Heimbürger et. al., Valvomo – Suunnittelu periaatteet ja käytännöt, Suomen automaatioseura ry., 2010, 268 s.
PSK-standardeihin on pääsy XAMK:n kirjaston verkkotietokannoista.
Yksilölliset oppimisväylät
Scheduled track:
After completing this course, you will be able to
• explain the main phases and outputs of an automation project
• specify automation loop by loop, or tag by tag
• analyze and design field instrumentation
• program, test and commission measurement and control applications and control room graphics of power plants
• use CAD programs and shared database and documentation programs for automation engineering
• work out a budget of an automation project.
What should you do in a specification, design, implementation, installation, functional testing, validation, production and removal phases of an automation project?
How do you work out an instrumentation or motor loop description, and how is it utilized by an operator or a maintenance engineer?
How do you present cabling and connections in instrumentation and electrical loop diagrams?
In which way is the design of automation applications supported by block programming?
How do you manage the engineering and maintenance of instrumentation and motor control?
Which elements make the price of an automation project?
Independent track:
Exam and work-related projec
Blended track:
Exam and project
TKI ja työelämäyhteistyö
RDI work is not included in the course.
Tentit ja muut määräajat
Partial exams.
Opiskelijan työmäärä
- 15 h live lectures
- 20 h supervised project processing
- 100 h recorded lectures, and other self-study
Further information
Next prerequisite courses are recommended:
Measurement and Control Technology
Process Control Systems and Communication Networks,
or related qualifications are required.
Evaluation scale
1-5
Assessment methods and criteria
The course is assessed based on partial exams (60 %) and a project (40 %) with grades 0-5.
Qualifications
Prerequisite courses are
Measurement and control technology
Process control systems and communication networks.
Enrollment
06.04.2022 - 22.04.2022
Timing
31.10.2022 - 16.12.2022
Number of ECTS credits allocated
5 op
Virtual portion
4 op
Mode of delivery
20 % Contact teaching, 80 % Distance learning
Unit
Department of Construction and Energy Engineering
Campus
Kotka Campus
Teaching languages
- English
- Finnish
Seats
10 - 50
Degree programmes
- Degree Programme in Energy Engineering
Teachers
- Merja Mäkelä
Teacher in charge
Merja Mäkelä
Groups
-
ENKT20SPEnergy engineering, full-time studies
-
ENKT21KMEnergy engineering, part-time studies
Objective
After completing this course, you will be able to
- explain the main phases and outputs of an automation project
- specify automation loop by loop
- analyze and design field instrumentation
- program, test and commission measurement and control applications and control room graphics of power plants
- use CAD programs and shared database and documentation programs for automation engineering
- work out a budget for an automation project.
Content
What should you do in the specification, design, implementation, installation, functional testing, validation, production and removal phases of an automation project?
How do you work out an instrumentation or motor loop description, and how is it utilized by an operator or maintenance engineer?
How do you present cabling and connections in instrumentation and electrical loop diagrams?
In which way is the design of automation applications supported by block programming?
How do you manage the engineering and maintenance of instrumentation and motor control?
Which elements make the price of an automation project?
Opiskelumateriaali
1. Learn-materiaali.
2. Automaatiosuunnittelun prosessimalli. Yhteiset käsitteet verkottuneen suunnittelun perustana. Suomen Automaatioseura ry., Helsinki, 2007. 43 s.
3. Tommila, T., toim. Laatu automaatiossa. Suomen Automaatioseura ry. , Helsinki, 2001. 245 s.
4. Automaatiosovellusten ohjelmistokehitys. Suunnittelun työtavat, välineet ja sovellusarkkitehtuurit. Suomen Automaatioseura ry. 2005. 152 s.
5. Harju, T., Marttinen, A. Säätötekniikan koulutusmateriaali (verkkojulkaisu), Säätöpiirin virityksen perusteet (kirja). Suomen Automaatioseura ry. , Helsinki, 2000. 166 s.
6. Automaatio liiketoimintaprosessien tukena (verkkojulkaisu Suomen automaatioseura ry.), Tekesin katsaus 271, 2010.
7. SFS-ISO 14617-6 Kaavioissa käytettävät piirrosmerkit. Osa 6: Mittaus- ja ohjaustoiminnot. SFS, Helsinki, 2004.
8. SFS-EN ISO 10628 Prosessikaaviot. Yleiset ohjeet. SFS, Helsinki, 2001.
9. PSK 3601 Prosessiteollisuuden virtauskaavioiden piirrosmerkit. PSK Standardisointi, Helsinki, 2005. 38 s.
10. PSK 5201 - PSK 5210 Instrumenttiasennusten tyyppipiirustukset. PSK Standardisointi, Helsinki, 2003.
11. PSK 4601 Automaation hankinta. Yleiset periaatteet. käsitteet ja määritelmät. PSK Standardisointi, Helsinki, 1996. 24 s.
12. PSK 4602 Automaation hankinta. Prosessinohjausjärjestelmä. PSK Standardisointi, Helsinki, 1996. 11 s.
13. PSK 4603 Automaation hankinta. Instrumentointi. PSK Standardisointi, Helsinki, 1996. 10 s.
14. PSK 7902 Teollisuuden suunnittelu. Sopimusmalli. PSK Standardisointi, Helsinki, 2005. 2 + 29 s.
15. SFS-IEC 61506 Teollisuusprosessien mittaus ja ohjaus. Sovellusohjelmiston dokumentaatio. Suomen Standar-disoimisliitto SFS, Helsinki, 1998. 121 s.
16. SFS-IEC 848 Ohjausjärjestelmien toimintodiagrammien laatiminen.
17. SFS 5098 Prosessi-instrumentoinnin piirustukset ja muut asiakirjat.
18. SFS 2972 Sähkölaitteiden kotelointiluokat.
19. Heimbürger et. al., Valvomo – Suunnittelu periaatteet ja käytännöt, Suomen automaatioseura ry., 2010, 268 s.
PSK-standardeihin on pääsy XAMK:n kirjaston verkkotietokannoista.
Yksilölliset oppimisväylät
Scheduled track:
After completing this course, you will be able to
• explain the main phases and outputs of an automation project
• specify automation loop by loop, or tag by tag
• analyze and design field instrumentation
• program, test and commission measurement and control applications and control room graphics of power plants
• use CAD programs and shared database and documentation programs for automation engineering
• work out a budget of an automation project.
What should you do in a specification, design, implementation, installation, functional testing, validation, production and removal phases of an automation project?
How do you work out an instrumentation or motor loop description, and how is it utilized by an operator or a maintenance engineer?
How do you present cabling and connections in instrumentation and electrical loop diagrams?
In which way is the design of automation applications supported by block programming?
How do you manage the engineering and maintenance of instrumentation and motor control?
Which elements make the price of an automation project?
Independent track:
Exam and work-related projec
Blended track:
Exam and project
Tentit ja muut määräajat
Partial exams.
Opiskelijan työmäärä
- 35 h live lectures and supervised project processing
- 100 h recorded lectures, and other self-study
Further information
Next prerequisite courses are recommended:
Measurement and Control Technology
Process Control Systems and Communication Networks,
or related qualifications are required.
Evaluation scale
1-5
Assessment methods and criteria
The course is assessed based on Partial exam 1 (30 %), partial exam 2 (30 %) and a project (40 %) with grades 0-5.
Qualifications
Prerequisite courses are
Measurement and control technology
Process control systems and communication networks.