Intensive course in mathematics in the field of engineering (3 cr)
Code: VV00ED88-3008
General information
- Enrollment
-
15.08.2020 - 04.09.2020
Registration for the implementation has ended.
- Timing
-
24.08.2020 - 18.12.2020
Implementation has ended.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Contact learning
- Unit
- Department of Logistics and Marine Technology
- Campus
- Kotka Campus
- Teaching languages
- Finnish
- Degree programmes
- Degree Programme in Logistics
- Teachers
- Lassi Salminen
- Teacher in charge
- Lassi Salminen
- Groups
-
LOKT20SM1Logistics, part-time studies
- Course
- VV00ED88
Objective
You are able to flexibly deal with expressions containing fractional numbers also in the symbolic form.
You are able to simplify mathematical expressions, to find a common factor and use the square of a binomial as well as the product of sum and difference.
You are familiar with basic formulas of powers and roots and you are able to use them effortlessly. You are also familiar with negative exponents.
You know thoroughly how to solve equations of first and second degree.
You area able to solve for a given variable in a formula.
You are able to solve a system of two linear equations and to create equations based on simple verbal problems.
You are familiar with mathematical functions and you are able to draw the graph of a line or a parabola.
You know the prerequisites for solving a right-angled triangle and you can carry out the solving process effortlessly.
Content
How do you carry out the basic calculations of fractional numbers?
How do you simplify expressions by removing parentheses, performing the multiplications and combining similar terms?
How do you perform mathematical operations for simplifying power and root expressions?
How do you factorizate a mathematical expression by using a common factor?
How are the formulas of the square of a binomial and the product of sum and difference work used?
How do you solve an equation of first degree and similar formulas?
What are the three forms of a quadratic equation and how can these be solved efficiently?
How do you define the slope, form the equation and draw the graph of a line?
How do you solve a system of two linear equations and present it graphically in the coordinate system?
How do you calculate the apex and zero positions of a parabola and draw the graph of it?
What are the right triangle definitions for trigonometry functions? How can the right triangle be solved?
Course material
Moodlessa oleva verkkomateriaali (sisältää myös ACP-luentoja).
Study forms and methods
Työviikkopohjainen oppimisväylä:
Miten käsittelet matemaattisia summalausekkeita?
======================================
• Lausekkeen arvo
• Samanmuotoisten termien yhdistäminen
• Sulkujen poistaminen summalausekkeesta
• Summan kertominen ja jakaminen luvulla
• Tekijän erottaminen
======================================
Miten suoritat laskutoimituksia murtoluvuilla?
======================================
• Murtolukujen yhteenlasku
• Murtolukujen vähennyslasku
• Murtolukujen kertolasku
• Murtolukujen jakolasku
======================================
Miten ratkaiset ensimmäisen asteen yhtälön? Miten tulkitset yhtälön kuvaaman ongelman?
======================================
• Yhtälön peruskäsitteitä
• Kaavat sovelluksissa
• Kuvaaja: suora
======================================
Mikä on yhtälöpari? Millaisista ongelmista syntyy yhtälöpareja? Miten se ratkaistaan?
======================================
• ratkaiseminen sijoitusmenettelyllä
• ratkaiseminen yhteenlaskumenettelyllä
• yhtälöparin graafinen tulkinta
======================================
Miten käsittelet potenssilausekkeita? Mitä tarkoittaa negatiivinen potenssi?
======================================
• Neliö ja kuutio
• Eksponenttina nolla
• Eksponenttina negatiivinen luku
• Tulon ja osamäärän potenssi
• Samankantaisten potenssien tulo ja osamäärä
• Potenssin potenssi
======================================
Miten käsitellään juurilausekkeita?
======================================
• Neliöjuuri
• Kuutiojuuri
• Juuret kaavoissa
======================================
Mikä on polynomilauseke? Miten kerrot ja jaat polynomeja keskenään? Mitä ovat binomin neliö ja summan ja erotuksen tulo?
======================================
• Käsitteitä
• Polynomien yhteen- ja vähennyslasku
• Polynomien kertolasku
• Binomin neliö
• Summan ja erotuksen tulo
• Polynomien jakolasku – myös jakokulmaa käyttäen
• Polynomin jakaminen tekijöihin
======================================
Mikä on toisen asteen yhtälö? Miten ratkaistaan erityyppisiä toisen asteen yhtälöitä?
======================================
• Peruskäsitteitä
• Juurtaminen
• Tekijöihin jakaminen yhtälöä ratkaistaessa
• Ratkaisukaava
• Yhtälön juurten reaalisuuden tutkiminen diskriminantin avulla
• Kuvaaja: paraabeli
======================================
Mikä on funktio? Miten piirretään perusfunktioiden kuvaajat (suora ja paraabeli)?
Miten kuvaajia tulkitaan?
======================================
• Funktion käsite
• Ensimmäisen asteen funktion kuvaaja: suora
• Kulmakerroin
• Yhdensuuntaiset suorat
• Nouseva ja laskeva suora
• Toisen asteen funktion kuvaaja: paraabeli
• Nollakohtien ja aukeamissuunnan määrittäminen
======================================
Miten ratkaistaan suorakulmainen kolmio?
======================================
• Pythagoraan lause ja suorakulmaisen kolmion trigonometria
======================================
Suoritustapa: Tunneille osallistuminen (vähintään 70 %) ja kurssikoe.
Opintoja nopeuttava oppimisväylä:
Miten käsittelet matemaattisia summalausekkeita?
======================================
• Lausekkeen arvo
• Samanmuotoisten termien yhdistäminen
• Sulkujen poistaminen summalausekkeesta
• Summan kertominen ja jakaminen luvulla
• Tekijän erottaminen
======================================
Miten suoritat laskutoimituksia murtoluvuilla?
======================================
• Murtolukujen yhteenlasku
• Murtolukujen vähennyslasku
• Murtolukujen kertolasku
• Murtolukujen jakolasku
======================================
Miten ratkaiset ensimmäisen asteen yhtälön? Miten tulkitset yhtälön kuvaaman ongelman?
======================================
• Yhtälön peruskäsitteitä
• Kaavat sovelluksissa
• Kuvaaja: suora
======================================
Mikä on yhtälöpari? Millaisista ongelmista syntyy yhtälöpareja? Miten se ratkaistaan?
======================================
• ratkaiseminen sijoitusmenettelyllä
• ratkaiseminen yhteenlaskumenettelyllä
• yhtälöparin graafinen tulkinta
======================================
Miten käsittelet potenssilausekkeita? Mitä tarkoittaa negatiivinen potenssi?
======================================
• Neliö ja kuutio
• Eksponenttina nolla
• Eksponenttina negatiivinen luku
• Tulon ja osamäärän potenssi
• Samankantaisten potenssien tulo ja osamäärä
• Potenssin potenssi
======================================
Miten käsitellään juurilausekkeita?
======================================
• Neliöjuuri
• Kuutiojuuri
• Juuret kaavoissa
======================================
Mikä on polynomilauseke? Miten kerrot ja jaat polynomeja keskenään? Mitä ovat binomin neliö ja summan ja erotuksen tulo?
======================================
• Käsitteitä
• Polynomien yhteen- ja vähennyslasku
• Polynomien kertolasku
• Binomin neliö
• Summan ja erotuksen tulo
• Polynomien jakolasku – myös jakokulmaa käyttäen
• Polynomin jakaminen tekijöihin
======================================
Mikä on toisen asteen yhtälö? Miten ratkaistaan erityyppisiä toisen asteen yhtälöitä?
======================================
• Peruskäsitteitä
• Juurtaminen
• Tekijöihin jakaminen yhtälöä ratkaistaessa
• Ratkaisukaava
• Yhtälön juurten reaalisuuden tutkiminen diskriminantin avulla
• Kuvaaja: paraabeli
======================================
Mikä on funktio? Miten piirretään perusfunktioiden kuvaajat (suora ja paraabeli)?
Miten kuvaajia tulkitaan?
======================================
• Funktion käsite
• Ensimmäisen asteen funktion kuvaaja: suora
• Kulmakerroin
• Yhdensuuntaiset suorat
• Nouseva ja laskeva suora
• Toisen asteen funktion kuvaaja: paraabeli
• Nollakohtien ja aukeamissuunnan määrittäminen
======================================
Miten ratkaistaan suorakulmainen kolmio?
======================================
• Pythagoraan lause ja suorakulmaisen kolmion trigonometria
======================================
Suoritustapa: Tunneille osallistuminen (vähintään 70 %) ja kurssikoe.
Työhön integroitu oppimisväylä:
Miten käsittelet matemaattisia summalausekkeita?
======================================
• Lausekkeen arvo
• Samanmuotoisten termien yhdistäminen
• Sulkujen poistaminen summalausekkeesta
• Summan kertominen ja jakaminen luvulla
• Tekijän erottaminen
======================================
Miten suoritat laskutoimituksia murtoluvuilla?
======================================
• Murtolukujen yhteenlasku
• Murtolukujen vähennyslasku
• Murtolukujen kertolasku
• Murtolukujen jakolasku
======================================
Miten ratkaiset ensimmäisen asteen yhtälön? Miten tulkitset yhtälön kuvaaman ongelman?
======================================
• Yhtälön peruskäsitteitä
• Kaavat sovelluksissa
• Kuvaaja: suora
======================================
Mikä on yhtälöpari? Millaisista ongelmista syntyy yhtälöpareja? Miten se ratkaistaan?
======================================
• ratkaiseminen sijoitusmenettelyllä
• ratkaiseminen yhteenlaskumenettelyllä
• yhtälöparin graafinen tulkinta
======================================
Miten käsittelet potenssilausekkeita? Mitä tarkoittaa negatiivinen potenssi?
======================================
• Neliö ja kuutio
• Eksponenttina nolla
• Eksponenttina negatiivinen luku
• Tulon ja osamäärän potenssi
• Samankantaisten potenssien tulo ja osamäärä
• Potenssin potenssi
======================================
Miten käsitellään juurilausekkeita?
======================================
• Neliöjuuri
• Kuutiojuuri
• Juuret kaavoissa
======================================
Mikä on polynomilauseke? Miten kerrot ja jaat polynomeja keskenään? Mitä ovat binomin neliö ja summan ja erotuksen tulo?
======================================
• Käsitteitä
• Polynomien yhteen- ja vähennyslasku
• Polynomien kertolasku
• Binomin neliö
• Summan ja erotuksen tulo
• Polynomien jakolasku – myös jakokulmaa käyttäen
• Polynomin jakaminen tekijöihin
======================================
Mikä on toisen asteen yhtälö? Miten ratkaistaan erityyppisiä toisen asteen yhtälöitä?
======================================
• Peruskäsitteitä
• Juurtaminen
• Tekijöihin jakaminen yhtälöä ratkaistaessa
• Ratkaisukaava
• Yhtälön juurten reaalisuuden tutkiminen diskriminantin avulla
• Kuvaaja: paraabeli
======================================
Mikä on funktio? Miten piirretään perusfunktioiden kuvaajat (suora ja paraabeli)?
Miten kuvaajia tulkitaan?
======================================
• Funktion käsite
• Ensimmäisen asteen funktion kuvaaja: suora
• Kulmakerroin
• Yhdensuuntaiset suorat
• Nouseva ja laskeva suora
• Toisen asteen funktion kuvaaja: paraabeli
• Nollakohtien ja aukeamissuunnan määrittäminen
======================================
Miten ratkaistaan suorakulmainen kolmio?
======================================
• Pythagoraan lause ja suorakulmaisen kolmion trigonometria
======================================
Suoritustapa: Tunneille osallistuminen (vähintään 70 %) ja kurssikoe.
Timing of exams and assignments
Yleisinä uusintatenttipäivinä.
Student workload
Oppitunnit n. 16 h.
Itsenäinen verkko-opiskelu (Moodle) 40 h.
Loppukoe ja siihen valmistautuminen 15 h.
Evaluation scale
1-5
Assessment methods and criteria
Tunti- ja kotitehtävät ja loppukoe.
Qualifications
passing the entrance examination of engineering studies