Discrete mathematics 1 (5 cr)
Code: TK00BK40-3038
General information
- Enrollment
-
14.08.2024 - 08.09.2024
Registration for the implementation has ended.
- Timing
-
02.09.2024 - 20.12.2024
Implementation has ended.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- Department of Information Technology
- Campus
- Mikkeli Campus
- Teaching languages
- English
- Seats
- 20 - 40
- Degree programmes
- Degree Programme in Business Information Technology
- Degree Programme in Information Technology
- Teachers
- Reijo Vuohelainen
- Teacher in charge
- Jari Kortelainen
- Groups
-
ITMI24SPInformation technology, full-time studies
- Course
- TK00BK40
Realization has 26 reservations. Total duration of reservations is 39 h 0 min.
Time | Topic | Location |
---|---|---|
Mon 02.09.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 05.09.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 09.09.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Mon 16.09.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 19.09.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 23.09.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 26.09.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Thu 03.10.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 07.10.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 10.10.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 14.10.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 17.10.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 28.10.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 31.10.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 04.11.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 07.11.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 11.11.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 14.11.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 18.11.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 21.11.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 25.11.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 28.11.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 02.12.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 05.12.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Mon 09.12.2024 time 13:30 - 15:00 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MB216
Byod-/teorialuokka
|
Thu 12.12.2024 time 10:00 - 11:30 (1 h 30 min) |
Discrete mathematics 1 TK00BK40-3038 |
MA325
Byod-/teorialuokka
|
Objective
You are able to perform calculations in different number systems.
You are able to present valid arguments.
You are able to combine sets algebraically.
Content
How are numbers presented in number systems and calculations performed?
What do logic and valid argumentation mean?
How are sets and relations defined and how are they combined and illustrated?
What does abstract algebra, especially Boolean algebra, mean?
Course material
To be settled later on.
Study forms and methods
Scheduled track:
You participate in lectures and exercises according to the weekly schedule.
Independent track:
You can show your competence e.g. by a certificate. To be settled at the course kick off.
RDI and work-related cooperation
To be settled at the course kick off.
Timing of exams and assignments
To be settled at the course kick off.
Student workload
135 h
Evaluation scale
1-5
Assessment methods and criteria
To be settled at the course kick off.