Skip to main content

Machine learning methods (5 cr)

Code: RO00FQ45-3001

General information


Enrollment
07.04.2025 - 21.04.2025
Registration for introductions has not started yet.
Timing
01.09.2025 - 12.12.2025
The implementation has not yet started.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Department of Construction and Energy Engineering
Campus
Kouvola Campus
Teaching languages
English
Finnish
Teachers
Henry Lähteenmäki
Teacher in charge
Henry Lähteenmäki
Groups
ROKV23SP
Robotics and artificial intelligence, full-time studies
ROKT22SP
Robotics and artificial intelligence, full-time studies
Course
RO00FQ45

Realization has 39 reservations. Total duration of reservations is 53 h 30 min.

Time Topic Location
Tue 02.09.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 03.09.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 03.09.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 09.09.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
141 Teorialuokka (40+1), päärakennus
Wed 10.09.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 10.09.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 16.09.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 17.09.2025 time 09:00 - 10:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 17.09.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 23.09.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 24.09.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 24.09.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 30.09.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 01.10.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 01.10.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 07.10.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 08.10.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 08.10.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 28.10.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
142 Teorialuokka (40+1), päärakennus
Wed 29.10.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
142 Teorialuokka (40+1), päärakennus
Wed 29.10.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
142 Teorialuokka (40+1), päärakennus
Tue 11.11.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 12.11.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 12.11.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 18.11.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 19.11.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 19.11.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 25.11.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 26.11.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 26.11.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 02.12.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 03.12.2025 time 09:00 - 10:00
(1 h 0 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 03.12.2025 time 10:00 - 11:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 09.12.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 10.12.2025 time 09:00 - 10:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 10.12.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Tue 16.12.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 17.12.2025 time 09:00 - 10:30
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Wed 17.12.2025 time 10:30 - 12:00
(1 h 30 min)
Machine learning methods RO00FQ45-3001
309C Teorialuokka (52+1), 3. kerros
Changes to reservations may be possible.

Objective

You are familiar with various machine learning methods.
You understand what supervised learning means.
You understand what unsupervised learning means.
You understand the principles of linear regression.
You understand how logistic regression is used in classification.
You can communicate using machine learning terminology.
You are familiar with the basics of neural networks.
You understand the principles of decision trees and random forests.

Content

What are the different methods of machine learning?
How are machine learning models implemented through programming?
How is the appropriate machine learning method chosen for a specific application?
How are different libraries for machine learning used in programming?

Course material

Lecture notes and calculations.

Study forms and methods

Final exam.

RDI and work-related cooperation

This course does not include RDI and work-related cooperation.

Evaluation scale

1-5

Qualifications

Skills in machine learning mathematics, programming, and data analysis are required.

Go back to top of page