Machine learning methods (5 cr)
Code: RO00FQ45-3001
General information
- Enrollment
-
07.04.2025 - 21.04.2025
Registration for introductions has not started yet.
- Timing
-
01.09.2025 - 12.12.2025
The implementation has not yet started.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- Department of Construction and Energy Engineering
- Campus
- Kouvola Campus
- Teaching languages
- English
- Finnish
- Teachers
- Henry Lähteenmäki
- Teacher in charge
- Henry Lähteenmäki
- Groups
-
ROKV23SPRobotics and artificial intelligence, full-time studies
-
ROKT22SPRobotics and artificial intelligence, full-time studies
- Course
- RO00FQ45
Realization has 39 reservations. Total duration of reservations is 53 h 30 min.
Time | Topic | Location |
---|---|---|
Tue 02.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 03.09.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 03.09.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 09.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
141
Teorialuokka (40+1), päärakennus
|
Wed 10.09.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 10.09.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 16.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 17.09.2025 time 09:00 - 10:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 17.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 23.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 24.09.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 24.09.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 30.09.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 01.10.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 01.10.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 07.10.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 08.10.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 08.10.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 28.10.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
142
Teorialuokka (40+1), päärakennus
|
Wed 29.10.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
142
Teorialuokka (40+1), päärakennus
|
Wed 29.10.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
142
Teorialuokka (40+1), päärakennus
|
Tue 11.11.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 12.11.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 12.11.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 18.11.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 19.11.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 19.11.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 25.11.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 26.11.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 26.11.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 02.12.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 03.12.2025 time 09:00 - 10:00 (1 h 0 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 03.12.2025 time 10:00 - 11:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 09.12.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 10.12.2025 time 09:00 - 10:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 10.12.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Tue 16.12.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 17.12.2025 time 09:00 - 10:30 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Wed 17.12.2025 time 10:30 - 12:00 (1 h 30 min) |
Machine learning methods RO00FQ45-3001 |
309C
Teorialuokka (52+1), 3. kerros
|
Objective
You are familiar with various machine learning methods.
You understand what supervised learning means.
You understand what unsupervised learning means.
You understand the principles of linear regression.
You understand how logistic regression is used in classification.
You can communicate using machine learning terminology.
You are familiar with the basics of neural networks.
You understand the principles of decision trees and random forests.
Content
What are the different methods of machine learning?
How are machine learning models implemented through programming?
How is the appropriate machine learning method chosen for a specific application?
How are different libraries for machine learning used in programming?
Course material
Lecture notes and calculations.
Study forms and methods
Final exam.
RDI and work-related cooperation
This course does not include RDI and work-related cooperation.
Evaluation scale
1-5
Qualifications
Skills in machine learning mathematics, programming, and data analysis are required.