Skip to main content

Discrete mathematics 2 (5 cr)

Code: TK00BK51-3021

General information


Enrollment
04.11.2024 - 17.11.2024
Registration for the implementation has ended.
Timing
13.01.2025 - 02.05.2025
Implementation is running.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Department of Information Technology
Campus
Mikkeli Campus
Teaching languages
English
Seats
20 - 40
Degree programmes
Degree Programme in Information Technology
Teachers
Reijo Vuohelainen
Teacher in charge
Reijo Vuohelainen
Groups
ITMI23SP
Information technology, full-time studies
Course
TK00BK51

Realization has 27 reservations. Total duration of reservations is 42 h 0 min.

Time Topic Location
Wed 15.01.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 16.01.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 22.01.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 23.01.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 29.01.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 30.01.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 05.02.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 06.02.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 12.02.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 13.02.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 19.02.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 20.02.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 05.03.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 06.03.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 12.03.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 13.03.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 19.03.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 20.03.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 26.03.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 27.03.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 02.04.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 03.04.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 09.04.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 10.04.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Wed 16.04.2025 time 10:00 - 11:30
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 17.04.2025 time 12:30 - 14:00
(1 h 30 min)
Discrete mathematics 2 TK00BK51-3021
MA325 Byod-/teorialuokka
Thu 24.04.2025 time 12:30 - 15:30
(3 h 0 min)
Discrete mathematics 2 TK00BK51-3021: Exam
MA325 Byod-/teorialuokka
Changes to reservations may be possible.

Objective

You know the basic concepts of linear algebra and are able to perform calculations by means of vectors and matrices.
You know the basic concepts of graph theory and are able to solve problems by means of graphs.
You are able to define and illustrate finite state machines and automata.

Content

How are calculations performed by means of vectors and matrices and how are systems of linear equations solved?
What is coordinate system and coordinate transformation?
What applications does linear algebra have?
How are graphs defined, classified and utilised in problem-solving?
How are finite state machines and automata defined and utilised in applications?

Course material

Seymour Lipschutz, Essential Computer Mathematics, Schaum's Outline Series, McGraw-Hill 1982 or 1987. Additional material in Learn.

Study forms and methods

The course will be contact teaching on the campus and you follow the weekly schedules. Theory lectures, homework and final exam.

RDI and work-related cooperation

No pre-planned co-operation.

Timing of exams and assignments

Final exam is at the end of the course. The actual date and time will be given on weekly schedule.

International cooperation

No prepared co-operation.

Student workload

The five point course is counted to be 135 hours for students work. Theory lectures, homework and the final exam.

Evaluation scale

1-5

Assessment methods and criteria

Evaluation is based on the final exam. Extra points from activity as described on Learn.

Qualifications

Discrete mathematics 1 or equivalent knowledge

Go back to top of page