Discrete mathematics 2 (5 cr)
Code: TK00BK51-3030
General information
- Enrollment
-
07.04.2025 - 21.04.2025
Registration for introductions has not started yet.
- Timing
-
01.09.2025 - 19.12.2025
The implementation has not yet started.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Contact learning
- Unit
- Department of Information Technology
- Campus
- Mikkeli Campus
- Teaching languages
- Finnish
- Seats
- 20 - 40
- Degree programmes
- Degree Programme in Business Information Technology
- Degree Programme in Information Technology
- Teachers
- Reijo Vuohelainen
- Teacher in charge
- Reijo Vuohelainen
- Groups
-
OTMI24SPSoftware Engineering, full-time studies
- Course
- TK00BK51
Realization has 25 reservations. Total duration of reservations is 38 h 0 min.
Time | Topic | Location |
---|---|---|
Mon 01.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 08.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 11.09.2025 time 09:30 - 11:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 15.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 18.09.2025 time 09:00 - 10:30 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 22.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 25.09.2025 time 09:30 - 11:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 29.09.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 02.10.2025 time 13:30 - 15:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 06.10.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 09.10.2025 time 09:30 - 11:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 09.10.2025 time 13:30 - 15:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 13.10.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 16.10.2025 time 09:00 - 10:30 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 27.10.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 30.10.2025 time 09:30 - 11:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 03.11.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 06.11.2025 time 09:00 - 10:30 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 10.11.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 17.11.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 24.11.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 01.12.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 08.12.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Mon 15.12.2025 time 12:30 - 14:00 (1 h 30 min) |
Diskreetti matematiikka 2 TK00BK51-3030 |
E208
Teorialuokka
|
Thu 18.12.2025 time 11:00 - 13:00 (2 h 0 min) |
Discrete mathematics 1-2 EXAM |
A117
Kampussali A
|
Objective
You know the basic concepts of linear algebra and are able to perform calculations by means of vectors and matrices.
You know the basic concepts of graph theory and are able to solve problems by means of graphs.
You are able to define and illustrate finite state machines and automata.
Content
How are calculations performed by means of vectors and matrices and how are systems of linear equations solved?
What is coordinate system and coordinate transformation?
What applications does linear algebra have?
How are graphs defined, classified and utilised in problem-solving?
How are finite state machines and automata defined and utilised in applications?
Course material
Seymour Lipschutz, Essential Computer Mathematics, Schaum's Outline Series, McGraw-Hill 1982 or 1987. Additional material in Learn.
Seymour Lipschutz, Discrete mathematics, Schaum's Outline Series, McGraw-Hill can be used to find more on Graph theory.
Study forms and methods
Scheduled track:
You participate in lectures and exercises according to the weekly schedule.
Independent track:
You can show your competence e.g. by a certificate. To be settled at the course kick off.
RDI and work-related cooperation
To be settled later on.
Timing of exams and assignments
Final exam at the end of the course.
International cooperation
No preplanned co-operation.
Student workload
135 h
Evaluation scale
1-5
Assessment methods and criteria
The final exam and/or if something else is settled at the course kick off.
Qualifications
Discrete mathematics 1 or equivalent knowledge