Skip to main content

Tekniikan alan matematiikan tehovalmennus (3 cr)

Code: VV00DE90-3018

General information


Enrollment
15.08.2019 - 30.08.2019
Registration for the implementation has ended.
Timing
26.08.2019 - 18.10.2019
Implementation has ended.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Contact learning
Unit
Department of Construction and Energy Engineering
Campus
Kotka Campus
Teaching languages
Finnish
Degree programmes
Degree Programme in Construction Engineering
Teachers
Lassi Salminen
Teacher in charge
Lassi Salminen
Groups
RAKT19SP
Construction engineering, full-time studies
Course
VV00DE90
No reservations found for realization VV00DE90-3018!

Objective

You can use, reduce and compute different kind of expressions and units of measurement. You can solve basic problems of your professional field with expressions and equations. You can perform basic calculations using vector quantities and determine quantities graphically.

Content

What kind of operations can you do using expressions? What are power and roots and how do you calculate with them? How do you use units and 10th power? How do you form, solve and use the equations of 1st and 2nd grade? How do you solve the right-angled triangle using trigonometry? How do you calculate with vector quantities?

Course material

Moodlessa oleva verkkomateriaali (sisältää myös ACP-luentoja).

Study forms and methods

Työviikkopohjainen oppimisväylä:
Miten käsittelet matemaattisia summalausekkeita?
======================================
• Lausekkeen arvo
• Samanmuotoisten termien yhdistäminen
• Sulkujen poistaminen summalausekkeesta
• Summan kertominen ja jakaminen luvulla
• Tekijän erottaminen
======================================
Miten suoritat laskutoimituksia murtoluvuilla?
======================================
• Murtolukujen yhteenlasku
• Murtolukujen vähennyslasku
• Murtolukujen kertolasku
• Murtolukujen jakolasku
======================================
Miten ratkaiset ensimmäisen asteen yhtälön? Miten tulkitset yhtälön kuvaaman ongelman?
======================================
• Yhtälön peruskäsitteitä
• Kaavat sovelluksissa
• Kuvaaja: suora
======================================
Mikä on yhtälöpari? Millaisista ongelmista syntyy yhtälöpareja? Miten se ratkaistaan?
======================================
• ratkaiseminen sijoitusmenettelyllä
• ratkaiseminen yhteenlaskumenettelyllä
• yhtälöparin graafinen tulkinta
======================================
Miten käsittelet potenssilausekkeita? Mitä tarkoittaa negatiivinen potenssi?
======================================
• Neliö ja kuutio
• Eksponenttina nolla
• Eksponenttina negatiivinen luku
• Tulon ja osamäärän potenssi
• Samankantaisten potenssien tulo ja osamäärä
• Potenssin potenssi
======================================
Miten käsitellään juurilausekkeita?
======================================
• Neliöjuuri
• Kuutiojuuri
• Juuret kaavoissa
======================================
Mikä on polynomilauseke? Miten kerrot ja jaat polynomeja keskenään? Mitä ovat binomin neliö ja summan ja erotuksen tulo?
======================================
• Käsitteitä
• Polynomien yhteen- ja vähennyslasku
• Polynomien kertolasku
• Binomin neliö
• Summan ja erotuksen tulo
• Polynomien jakolasku – myös jakokulmaa käyttäen
• Polynomin jakaminen tekijöihin
======================================
Mikä on toisen asteen yhtälö? Miten ratkaistaan erityyppisiä toisen asteen yhtälöitä?
======================================
• Peruskäsitteitä
• Juurtaminen
• Tekijöihin jakaminen yhtälöä ratkaistaessa
• Ratkaisukaava
• Yhtälön juurten reaalisuuden tutkiminen diskriminantin avulla
• Kuvaaja: paraabeli
======================================
Mikä on funktio? Miten piirretään perusfunktioiden kuvaajat (suora ja paraabeli)?
Miten kuvaajia tulkitaan?
======================================
• Funktion käsite
• Ensimmäisen asteen funktion kuvaaja: suora
• Kulmakerroin
• Yhdensuuntaiset suorat
• Nouseva ja laskeva suora
• Toisen asteen funktion kuvaaja: paraabeli
• Nollakohtien ja aukeamissuunnan määrittäminen
======================================
Miten ratkaistaan suorakulmainen kolmio?
======================================
• Pythagoraan lause ja suorakulmaisen kolmion trigonometria
======================================
Suoritustapa: Tunneille osallistuminen (vähintään 70 %) ja kurssikoe.

Opintoja nopeuttava oppimisväylä:
Miten käsittelet matemaattisia summalausekkeita?
======================================
• Lausekkeen arvo
• Samanmuotoisten termien yhdistäminen
• Sulkujen poistaminen summalausekkeesta
• Summan kertominen ja jakaminen luvulla
• Tekijän erottaminen
======================================
Miten suoritat laskutoimituksia murtoluvuilla?
======================================
• Murtolukujen yhteenlasku
• Murtolukujen vähennyslasku
• Murtolukujen kertolasku
• Murtolukujen jakolasku
======================================
Miten ratkaiset ensimmäisen asteen yhtälön? Miten tulkitset yhtälön kuvaaman ongelman?
======================================
• Yhtälön peruskäsitteitä
• Kaavat sovelluksissa
• Kuvaaja: suora
======================================
Mikä on yhtälöpari? Millaisista ongelmista syntyy yhtälöpareja? Miten se ratkaistaan?
======================================
• ratkaiseminen sijoitusmenettelyllä
• ratkaiseminen yhteenlaskumenettelyllä
• yhtälöparin graafinen tulkinta
======================================
Miten käsittelet potenssilausekkeita? Mitä tarkoittaa negatiivinen potenssi?
======================================
• Neliö ja kuutio
• Eksponenttina nolla
• Eksponenttina negatiivinen luku
• Tulon ja osamäärän potenssi
• Samankantaisten potenssien tulo ja osamäärä
• Potenssin potenssi
======================================
Miten käsitellään juurilausekkeita?
======================================
• Neliöjuuri
• Kuutiojuuri
• Juuret kaavoissa
======================================
Mikä on polynomilauseke? Miten kerrot ja jaat polynomeja keskenään? Mitä ovat binomin neliö ja summan ja erotuksen tulo?
======================================
• Käsitteitä
• Polynomien yhteen- ja vähennyslasku
• Polynomien kertolasku
• Binomin neliö
• Summan ja erotuksen tulo
• Polynomien jakolasku – myös jakokulmaa käyttäen
• Polynomin jakaminen tekijöihin
======================================
Mikä on toisen asteen yhtälö? Miten ratkaistaan erityyppisiä toisen asteen yhtälöitä?
======================================
• Peruskäsitteitä
• Juurtaminen
• Tekijöihin jakaminen yhtälöä ratkaistaessa
• Ratkaisukaava
• Yhtälön juurten reaalisuuden tutkiminen diskriminantin avulla
• Kuvaaja: paraabeli
======================================
Mikä on funktio? Miten piirretään perusfunktioiden kuvaajat (suora ja paraabeli)?
Miten kuvaajia tulkitaan?
======================================
• Funktion käsite
• Ensimmäisen asteen funktion kuvaaja: suora
• Kulmakerroin
• Yhdensuuntaiset suorat
• Nouseva ja laskeva suora
• Toisen asteen funktion kuvaaja: paraabeli
• Nollakohtien ja aukeamissuunnan määrittäminen
======================================
Miten ratkaistaan suorakulmainen kolmio?
======================================
• Pythagoraan lause ja suorakulmaisen kolmion trigonometria
======================================
Suoritustapa: Tunneille osallistuminen (vähintään 70 %) ja kurssikoe.

Työhön integroitu oppimisväylä:
Miten käsittelet matemaattisia summalausekkeita?
======================================
• Lausekkeen arvo
• Samanmuotoisten termien yhdistäminen
• Sulkujen poistaminen summalausekkeesta
• Summan kertominen ja jakaminen luvulla
• Tekijän erottaminen
======================================
Miten suoritat laskutoimituksia murtoluvuilla?
======================================
• Murtolukujen yhteenlasku
• Murtolukujen vähennyslasku
• Murtolukujen kertolasku
• Murtolukujen jakolasku
======================================
Miten ratkaiset ensimmäisen asteen yhtälön? Miten tulkitset yhtälön kuvaaman ongelman?
======================================
• Yhtälön peruskäsitteitä
• Kaavat sovelluksissa
• Kuvaaja: suora
======================================
Mikä on yhtälöpari? Millaisista ongelmista syntyy yhtälöpareja? Miten se ratkaistaan?
======================================
• ratkaiseminen sijoitusmenettelyllä
• ratkaiseminen yhteenlaskumenettelyllä
• yhtälöparin graafinen tulkinta
======================================
Miten käsittelet potenssilausekkeita? Mitä tarkoittaa negatiivinen potenssi?
======================================
• Neliö ja kuutio
• Eksponenttina nolla
• Eksponenttina negatiivinen luku
• Tulon ja osamäärän potenssi
• Samankantaisten potenssien tulo ja osamäärä
• Potenssin potenssi
======================================
Miten käsitellään juurilausekkeita?
======================================
• Neliöjuuri
• Kuutiojuuri
• Juuret kaavoissa
======================================
Mikä on polynomilauseke? Miten kerrot ja jaat polynomeja keskenään? Mitä ovat binomin neliö ja summan ja erotuksen tulo?
======================================
• Käsitteitä
• Polynomien yhteen- ja vähennyslasku
• Polynomien kertolasku
• Binomin neliö
• Summan ja erotuksen tulo
• Polynomien jakolasku – myös jakokulmaa käyttäen
• Polynomin jakaminen tekijöihin
======================================
Mikä on toisen asteen yhtälö? Miten ratkaistaan erityyppisiä toisen asteen yhtälöitä?
======================================
• Peruskäsitteitä
• Juurtaminen
• Tekijöihin jakaminen yhtälöä ratkaistaessa
• Ratkaisukaava
• Yhtälön juurten reaalisuuden tutkiminen diskriminantin avulla
• Kuvaaja: paraabeli
======================================
Mikä on funktio? Miten piirretään perusfunktioiden kuvaajat (suora ja paraabeli)?
Miten kuvaajia tulkitaan?
======================================
• Funktion käsite
• Ensimmäisen asteen funktion kuvaaja: suora
• Kulmakerroin
• Yhdensuuntaiset suorat
• Nouseva ja laskeva suora
• Toisen asteen funktion kuvaaja: paraabeli
• Nollakohtien ja aukeamissuunnan määrittäminen
======================================
Miten ratkaistaan suorakulmainen kolmio?
======================================
• Pythagoraan lause ja suorakulmaisen kolmion trigonometria
======================================
Suoritustapa: Tunneille osallistuminen (vähintään 70 %) ja kurssikoe.

Timing of exams and assignments

Yleisinä uusintatenttipäivinä.

Student workload

Oppitunnit 36 h.
Itsenäinen verkko-opiskelu (Moodle) 20 h.
Loppukoe ja siihen valmistautuminen 15 h.

Evaluation scale

1-5

Go back to top of page